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The Multivariate Normal Lehaviour of a
Symumetric m-Dimenstional Simple Fpidemic

by
Naftali A. Langberg

ABGTRACT

We congider a group of n osusceptible individuals who are exposed tom
contagious discnsea. 'The progres: of the epidemic among the fndividuals 4o

modeled by a stochastic process :\,l(” : (xn l“ Yo oo

ey X
' Tnm

The components of 1(_““,) deseribe the number of {nfective individuals with the

respective discase at time t.

For a class of cpidemic models named symmetric m-dimensional simple
epid~mice [Rillard, Lacayo and langberg (1979} we establish, with a suitable
standartization, the asymptotic normal convergence of ._\'“U) as n o+~ for

t in (0, =).

Avcve o o

(t)), t in (0, Y.
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1. Introduction and Summary.

In & simple epidomiv situation we assume that a population of
suscoptible individuals (susceptibles) 1s caposed only to once contagious
disease (disease) (vatley (1975) 1. lowever, freguently susceptibles are
exposed simultaneously to more than one discase, as is the caseo with
different types of tlu., In this paper we consider a population of suscept-
ibles exposed to m discases. ne say that the population of suscoptibles

undergoes an m-dimensional simple cpidemic it the following five assumptions

hold.
(1.1) Each susceptible contracts at most one discase.
(1.2) Unce a susceptible contracts disease v, r =1, ..., n he remains
contagious during tne duration of the epidemic,
(1.3) An infective individual (xnfucgiyg) with discase r, r =1, ,,., m
can transmit only that diseasc.
(1.4) Individuals neither join nor do they depart from the population, and
(1.5) At cach point in time at wost one susceptible contracts a diseasc,
Let TO denote the first time we have at least one infective with cach ot
the various diseases, a0 oy o ocenote tne oo, o of Sance, tivles at T,. ¢
<

GESCTRDY the progress o aa s diensional osoagle opluentc anon, suseoptibles
Y SR RSnensional Sstociaasu e process \"(() i\u,l(()""'\n,n(‘})' the
compoaents o §"\;) FOprenene 1ae oo o) mrectives with the respeccive
atscases at time t measured from T“

Billard, Lacayo and Langbory (1979} (BLL) considered a special case of

an m-dimensional simple opidemic and named it the symmetric m-dimensional

simple cpidemic., We say that a population of susceptibles aaccergods a

symmetric m-dimensional simple epidemic it the transition rates of disease 1

/.



At Ao i M

tarough m at time t, telQ,~), rigorously detined in Section 2, are res-

pectively piven by:
1.6) -1 \ tt -Xm \ t)-\ Ny}, v =1 ), =)
(1. n “'n,r( n r-ll n.r( 'n,r(()' . e eea, M, A ¢ (O,*),

The transition rates given by Lquation (1.6) retlect (a) that all inter-
actions vetween a susceptible and an infective are “equally lkely™ and
(M that not 'too many' infectives are added 1in short tine intervals; so
that the duration time of tue epidemic does not temd to zere as n o+« Ke
note that the symmetric m-dimensional simple cepidemic generalizes the
simple epidemic model used by wsicNeil (1970)0 In Section 0 we construct an
m-dimensional stochastic process that describes the progress of a symmetric
m-dimensional simple epidemic,

Let X(t) = lkl(t),...,\m(t)l. te(U,~) e u vandom veotor (rve) with
independent components.  Further, let the randow variable (rva) A () have
a negative binomial distribution with paramcters o and hrcll.i....} {or
r=1, ..., mand for te(U,~). oLl (1979) assume that n isx lLayge

vompared to each \“ r(n), re=1, ..., m, acondition tormally ygiven by,
’

(1.7) {im X“'r(n) = hr' re1, ..., m

"N\*

They prove that P{\‘“ r(t) - \" l_w) = kr, r =1, .., nlcan be approximated

m br.kr-l -ab _t -at kr
by R k e r ll-o ‘ ] for all te(v,%), and state 1t tformally as
r=] r

tollows:
(1.8) The rve 5"(!) converges in distribution as n +

(gggxprgos) to the rve X(t1) for all te(0,v).




Further, BLL (197%) prove that

tl .
(1.9) the 8 ! moment ot xu r(t) converyes as n o+ = to the
»
h . . .
ﬁ( moment ot \r(t) for all t, p «{0,*) and for
r=14, ..., m.

Thus, in particular one can approximite Exn rLt) and Vur(ln r(t)} by

t at . . .
e ) respectively tor r = 1, ..., mand tor t e (0,»).

b (¢F-1) and by hr(e:
It is quite conceivable that the epidemic starts with a burst of intec-
tives with the ditferent disecases. [t this is the case Condition (1.7) does
not necessarily hold; consequently the approximations discussed in the pre-
vious paragraph are not appropriate. To accomodate this situation we assume,

in constrast to Condition (1.7), that the number of infectives at To with

the various diseases are proportional to n. For technical reasons we require

a bit more and assume that for r =1, ..., n

S | ~ 9w
(1.10) dim (n \n’r(u)—\r)vn = (), where \l, e Am e (O,°),

n-ee

We note that the univariate version of Condition (1.10) was assumed, at
least implicitly, by McNeil (1972) to obtain his asymptotic result. In Section \

5 we show that under Condition (1.10) the rve {ﬂ(t), with the suitable stan-

dardization, converges to a multivariate normal (viVN) rve tor te(0,>=), uUne \\\1

can use this result to approximate the state probability:

POX L L(0)-X] ()=, rol,oom) for all €e(0,°) and all kpy ooey b cl0,1,...}.

1

Al

\ U > = 2, e J
r=1 \n'r(t), tei0,*), and let L(n), n 1, 2, , be a

Let X (t) = ]

)

sequences of integers in the set tl,...,n} tor almost all n, n = 1, 2, ...,

Ceaprdttvel s Partaes, let PR Lo, Lo mvil's assuain, velues i tac
.




set {1,...,m} designatiny the disease responsible for the xn(U) + A 1nfection
pea cctavely, e 1ot U Le tar ancceto,s T tion, looLection b owe show that

(ae Ve {L“\n)ZSiT)l(i ‘=r),r=l;....u).\onv;r5 S, Y1l taw suwig.ocle standard-

1,

1zativi, To o .40 SVe jToviaed

(1.11) cim n L) = ze(o,110.

l)-m

One cap use this result to approximate the probability of having simul-
tancously xn,r(O) + kr infectives with dJdisease r, r = 1, .,,, m when tne
total number of infectives: Xn(U) + L(n) is "almost' equal to a propor-
tion of n,

-

In Sections 3 and 4 we present some lemmas needed in the proots of

the two main results of Section 5.




2. 4odel Constructi

on,

in this sectio
describes the progr
the susceptibles.
. A =
Let T“.k.
time that clapses b
Let S = U, let s
n,»
Further, let 1 be t
r=1, ..., mbeth
10 + bn,k—l' Final
n-hke+1, k=l
ability space with
Throughout we

from the \"(u) + k

individual, 1 = 1,

n owe construct an m-dimensional stochastic process that
ess of tiie symmetric m-dimensional simple epidemic amony

S0 need sone notation,

th . L . . ..
1, ..., nbe the k— interinfection-time detfined as tne

ctween the xn(u) + N - 1 and the xn(o) + Kk infection,

-K e .
n,k N Eq=1 ln,q‘ A= 1, Lo, n, and let S = @,

n,n+l

lie indicator function, and let J =1, ..., n,

k,r’

¢ index set of all infectives with disease v at the time

1y, let n. i=1,

1,0,N

., hobe 1.1.d exponential rva's defined on some prob-

R MO I N W T P

) -1
4 mean cyual to na

describe the time measurecd

assume that the rva's n.

- 1 watection, h =1, ...

h

. .th .
, D until the 1— contagious

ceey \nl“) + h - ] causes the jih-susccptihle, i=1, ...,

th . . .
n - h ¢+ 1 to becone tae k= infective.
l'e are ready now to construct the desired stochastic process. Let

K=0, ..., n, let v =1, ..., m and let teld,=). Then the following event

equality holds.

n
(<.1) (xn’r(t)-xn’r(U):k) = Uk(S

& .=r)=k).
y= )

<taS 3
n,q't bn,q*l’ j=ll(“n,

Thus, to construct the process ﬁﬂ(‘) it suffices by Statement (2.1) to deter-

mine the distribution function of the rve (T 3 | }oooawe

n,i’'n,1"°

determine the distribution function of this rve in the tollowinyg two lemmas,.

) £
n,n’’n,n

Lemma 2.1. Let r =1, ..., m. Then

[Ny |

e




. \ o Sl
(2.3 l{”n,lnl} = Xn.r(u) xn (0), ana

(2.3) pls | =r|

n,k b=

t‘n,l""""n,k-l

} k-1 . 1
= (Xn,r(U)* q=1 1(¢ .q-r)}{kn(U)ok-l) , k=2, ..., n.

n

Proof. Let h =1, ..., ii. Then

(2.4) LL“.krr) = (mxn{ni' ’k:chk,r,j=1,...,n-k¢l}<
n
< mxn{ni’j’kzxecSle'e,)nl,...,n-k»l}).
QxEy

Consequently Statements (2.2) and (2.3) follow by simple calculations. ||

Lemma 2.2, Tne conditional ove {T T

ses e
n,l n,n

cxponential independent components with means respectively equal to

}lgn,l""'gn,n has
-1 ) -1
na {n-q*l)(xn Y +g-D T, g =1, L., .

’roof., Let k =1, ..., n. Then

>.5 ) =!;\ . . :‘” PO S Ltn- 3 e -K .
(2.%) 1n,\ | n(nx'."k i1, " M .o4+n=1,711, ,n-k+1}

Consequently th> result of the lemma follows, ]]

Now, we thow that the stochastic process constructed in the previous
paragraph describes the pro; e-s of a4 symmetric m-dimensional simple epidemic,
For the sake of corpletencss wo first, present a defini<i~n of the transi-
tion rates of the virious diseauses,

Definition 2.3. Lst r =1, ..., mand let tel0,~)., Then the transition

rate of disease r at time t is given by:

N | -
ﬁiﬁ» . P{Xn’r(t+h)—xn’r(t) 1|§n(t)}.




By the memoryless property of exponential rva's Lbarlow, Proschan (1975),

p.-56} and by Statements (2.1), (2.4)and (2.5) 1t tollows that the transition
rates of the various Jdiseases satisty Equation (1.6).
Finally, for reference purposes we present the tollowiny lemma,

A The Y T T . H 4 1 o
Lemma 2.4, (a) The rve's {ln,l""ln,u} and {in,l"""n,n} are inde
pendent, and (b) The rva's I N are independent.
n,l n,n

AT

1]
. o
solos o0 e e jab SR

Clesrhy feooone I

DTN SR N
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3. Prelinanaries.

In this section we establish the asymptotic behaviour of 4 specitic
SCQUETIVE O TAndon Vectors witn daricalet distributions,  he later use tiis
result 1n Section o,

For the sake of completeness we detine the thirichlet and tae Gamma Gis-
Loibutions,

Detinmition 5.1, Let o S be positive teal numbers, let (o) -

e e et e e e 1 {

A Yioa :0,r=l....,(~l,yi_l
“rel

T .x o-
J ¢ ‘xt lﬁxﬁgku,w). and let A (\Al...., -1 r

X -1z,
v
N}

o¢ say that the rve (hl....,k 1} has a aarichlet distribution witn para-
L= ————— . e e e

meters a ceay L, ald write {u, L.k Puibia, , ... ,00), 11 s density
1’ » e 1 -1 W R '

¢ a1 -1 nr-l -1 a -1
tunction 1s equal to (0 Ual)) Y\)‘_ a )X \\«2., RS I R
rsl 1 r=1"r r=] ! =1"r

b

Detimation 3.2, Let ¢ be a posttive number. he say that tne rva vV has

A Gamma distribution  with parascter &, ana write VW (e), 1t its density

R . . -1 -x v-t \
tunction 1s equdl to (N9 e x! [{(a,) 1,

NeXt, we stagte without proots twoe sinple propositions for retference
purposes,

Proprsition 3,3, Let d be a positive integer and let Vwa(d),  Then V ™~

18 egqual 1n distribution to the sum of o independent (1) rva's,

Froposition 3.4, Let o Gy be positive real numbers, let YT\G(or\.

IR

. . X3 . .
r= 1, ..., € e independent rva's, amd let \ = Er* \r' hen

1
-1

. -1
IV VT oV Y T e, a ),
1ot Wty
we are ready now to state and prove the main result ot the section., o
need some notation. Let o y =1, 2, oo v =1, L., U obe € osequenees

n,r




"
~—t
~

-

of positive 1ntegers converging to » and let a

R . hurtner, let
" ‘r=1 "n,r R

,)rt(U,X). and let -;rt(~~‘,“l, | T ST W3R (PG S

%
-
-
,
—
-
[

[hueorem .00 et i e
R u,l -1

Iaaa P
&n,l n,u

burtaer, let 2= (0,0, 0 Pobe a WA rve such that oS =2 0, LIT = p (1-p ),
- ! -1 r r r r
rell,...,t-1}, ane that )..Zl.l R TS TR I

Let us assure that

1 - .
3. 1) tlic L a - Jra ' r=1, ..., {, and that
\ ’ \ n H,l' }X') " ‘\r’ » ’ ’
’\N\‘
. -¢ \
RN aim o2 b, Joo= 0,
t : Lpay by ’ tr=] “r
'1.\\‘ l‘O\U
daen e -0 )'—&r< e " -1 bRy ;‘! COVe T o e L
Yo n' 'L n,¢ o=l n =

Froof. Let \( 1\(-(1), W=, 2 e, b=, oL, U be U independent
e \

. -lvyn,r
segquences ot ndependent rva's ana let A N I rs 1, ..., ¢,
n,r n o-y=1 q,r .
n =1, 2, ...
bacin of tne rva'’s \“ et v I, oo, toonsists ot 1aiud, o summands. tous,
o

oy tine normal central limit tacorern Loeve (lved), p. 2781 the sequences

-1 170

(Y -a 1) a a . . . .

n,r n,tn noon,ro,n =1, 2, Lo, <1, .., Cconverge to N0,1) rva's,
¢ note that tihe rva's "\n . vl aa., CYC bfel Cchelnt o or onoa L, oo L.,

’
and that
— -1 -1/2 ~1.1/2
(A Py Ya = LA -3 41 a a .a ™)
n,r'r n n,r n,rn nn,r n,rn

-1 — :
+(a a “ep dva ,ro= b, L, =1, 00 0L,
n,r n r n

onsegue s by Jondition (.1 > rveiA - A Lo AL epa)ra Y con-
consequently by Jondition (0.1) tie el P 0 DAL }‘)Vln} ¢

’
verges to a normal rve of independent components with means equal to ! ana

variances cqual to Ppr ¥ = 1, ..., ¢ respectively,

£~
Now, let B ﬁ‘ be real numbers such that )_r_i[n'rl\&) and let

1’ -1
L{x x.) = (\'(‘"lﬁ X )L}_“b X )-l By Proposition 3.3 a A W )
[ Y tra}rir ter=1"p’ " ) U Tain,r n, v’




.. 13

{-1

r =1, ..., { hence by Proposition 3.4 the rva's r=l

8 )

and g(An,l""‘An,L

W
r n,r
are equal in distribution tfor n =1, 2, ... . vre note that tne function g
has continous and nonvanishing first order partial derivatives at (Pl""ﬁl b, -F
X
Thnus, by Condition (5.2) 2r-l [ converges to a

£-1 £-1 2 £-1 2 ) -
N(Zr=l Br Qr' Zr=l Br pr-(zr=lﬁrpr) ) rva (Rao(1973) p. 3871,

Ve
1]
r n,r

. - vl-1
Finally, tne convergence of Zﬁ-l 8 to a4 normal rva with the para-

such that Zi;:‘hrl)"

I
r n,r

meters specitied above for all real numbers g

1o Bey
is equivalent to tie result of tne theorem. ([gillingsley (1968), p. 44, ¥

"




4. The asvaptot Deitdy tour ot \"\ Y,

Let T(Lqn)) = n‘\‘:““eu\ .pl)\\n\mo\‘ 1y ! Wi loet
‘B

Sybw? ) R

QL)) = n N tin .p\)\\"“n..l A b, N, L turthey, et
-

Al l 1
\ = )‘lr-l \r' let t0Y - o (e o Vel oy l\ ll, St 1Y and et
WLt e the tnverse tunctaon ot oY ity -y Leonpat (Lo VLo denpag gl ! ‘_

, N C 1 l |
tel0,) bamally, et oY = (le\Y 70t Ve « 4 T le .
1 i 1

¢ \led) Teapatle Vol O e DY 0 s i et sy be otie
Lavgest integer less than oqual e v, o ve o )

In this sectivn we prave that 'I\\\n(t\ ety VY cemeerypes tooa \“l.‘.‘|\\
rva tor all teO0) previaed Condition (L0 aetda . we later use this tesalt

I sSection by,
Fooprove the matn theovem of this section we nead the tellowing thee
lemmas .

Tewma 4.1 Tet us assuame that condation (V00 aolds and taat

(RN tiwm \n ll\n\ N N I W TURE & B S R A
noew

Vuen

(o) cam LD elamY ot aYbhn = vigVven) (b o)
“’l\'

- \
Proot, Lot oo lU\\ Py Y and bet ‘\” S S IR 1 SRR 1 N A O U B
]

. ) .
noe L0, LaL s he abserve that o) Tt Y)Y -on .‘l m TN o fH\“U“‘ SRR l\‘\ -
N lI ) i n ll \\\\‘ 1
-0t f" n {in-m H\\“(n)oln\ Ny Sy - AR \‘\“N\““‘u” da, taat

\ . K W
- e .
(h‘ tim n A O vt [T R W T v‘\ ' . \ LIS W e
W )
new ' e

1t suttices by othe mean value theovem and Statenents al, (DY oane ) te

show that

el

olfimnudie




-1
(4.3) am ! "“"1u-yn\n-w'layh}" - vthes)(1-2))

ne> -

since, at(z) - f:{\lv-))(\o,\'))"d\.

[\

Finally, Statement (4.5) tollows cleavly from the mean value theorem
and Condition (4.01). ||

Lemma 4.2, et us assume that Conditions (1,10 and (1.1) nold.  Then

(4.4) Cim ne"(L(n)) = \h\)“"{:.\"l(\ox) lo,‘,(l ,-,)’l.;‘,“;”.

‘\)!\‘
Proot we observe that v"(l (n) - n'f\\ (Weny 5“"‘(!! 1) “*
root ., N A R \ . * " } Y

)

. F‘ (")(\ U‘hq 1) e .Inhll\l,(nﬂ. Fhe conclusion of the lemma tollows

trom Statement (4.2) since, fim :}:l"_(_‘l“(ll-¢{0l)"'= z(l-z)'l and siwee,

n
<L) J -1 -1
: } - = 2 :
”"q’l \\“\\\n‘ 1) Ve L
n o«
Lemma 4.3, Let us assume that Conditions (1.10) and (4.1) hold,  Then
o -t'(:))v'i; converpes tooa wW(va ! (\e2) ! (1-2) A .
n,L(n) :

(hx)"‘(;\"(\o:)’l»:(l--)'lo:f(z)}‘ R

Proot.  lLet \"\M(”, q - Ly S s e s sequence of independent rvats,
.

Further, let I-n \ = n(.m(l.(n))(n-qﬂ)(\n\l\h.leJ(\\‘-l), g =1, o0 L),

n=1, 2, ..., and let ¢(h.(M)) = m‘l.(n)n-l min {(nqpl)(\“(“)'«rl”-
Lq~L(n)

-

. " -1 \l (I\)

. . A ) O . _ R R B are

By Lenma 2.4 the rva's (¢ i) Ih“'l.(“)) (LgnNand Lgx1 “.q AT

cqual in distribution for n = |, J, ... . we note that
- -1 < 1.0

N U(z2))vn 2 (S AN sl V!
“‘n,l,(n) rez))vn (‘\n.l.w} “‘n.l.(n))” (LM (ne (L ()]

+ \\-](l(l.\\\\)—«\f(.‘,)\v;ﬁ.

Thus, to prove the result of the temma 1t suttices by Lemmas 4.1 amd 4.0 o

l(n) -d

show that 21_1 n,q converges to a N(U,a T) rva,
’




"—————————‘ — -

)
Next, we show that )L(n) 4 converges to a N(U,a 7) rva., Let (=0
. . L(n) . . - . e ‘or
and Let u (€) = Z|=l ll" . I n.q' JJ, =1, 2, ... . Clearly, for all

-2 2 ,
>0 hn(e) s a ‘L((Vl-l) 1(|v1-11>¢c(L(n)))}. by tiie dominated convergence

theorem we have tor all ¢>0 that (im h (c) = 0 since, Uim ¢(l(n)) = ~. Thus,

L(n)
Zq 1 n q

N+ n s

converges to a N(U,u ) rvia by the normal central limit theorem
{Lodve (1963), p. 2807. ||
he arce ready now to prove the nain result of this section.

Theorem 4.4, Let us assume that Condition (1.10) holds, and let te (0,»).

Then {n-l(xn (t)-Xn(O))-u(t)}/ﬁ‘convergcs to a N(U,17(t)) rva,

- M
Proof. Let ve(-=,®) and let L(n) = | (vn l/“éu(t))n], ns=s1,2,

‘/e observe that v{(n’l(x“(t)-xn(U))-u(t))va>v} = P{s <t} =

n,L(n)
P((Sn'L(n)-f(u(t))/EA<U). Now we note that L(n) satisties Condition (4.])
with z = u(t)e(0,1). Thus, the conclusion of the theorem tollows from
Lemma 4.3, ||

Finally, we obscrve that (n_lx"(t)-u(t)-x)/ﬁ =

(n'l(xn(:)~xn(u))-u(t)}/ﬁ +(xn(u)-x)lﬁ'for n=1,

| 1Y

s ++- .« Thus, we obtain
by Condition (1.10) and Theorem 4.4 the following.
Corollary 4.5. Let us assume that Condition (1.10) holds, and let

te(VU,~). Then (n-lxn(t)-u(t)-x}/ﬁ'convcrges to a N, 17(t)) rva, ™~




S. Main Results.

Let Yr = xrx , T =1, ..o, m, and let 2 be in the interval (0,1,
In this section we prove under Conditions (1.10) and (1.11) our main results,
First, we show that tne rve ((L~l(n)inY)l(L" q:r)-yr).iIIT,r=l,...,m} converpes
'
to a VN rve. Next, we show tnat the rve {(nnlx"'r(t)-yru(t)-xr)/ﬁ.r=l,...,m}
converges to a JVa rve tor all te (V,v).
For the sahe of completeness we present toe tollowing definition,
vefinition 5.1, Let \q' qa=1, 2, ..., be a sequence of rva's,  be sayv
that Yq' q =1, 2, ..., 15 an exchangeable sequence of rva's if for all posi-

tive integers noand all permutations II of the set {1,...,n} the rve's

O ey JFand o Pare equal i airsaributon,

‘n(ll’“"‘nun
Let n be a positive integer. From Equatien (2..0) and the extension of
Lguation (2.3) to all he{Z,3,...} we conclude that £, q q=1,2, ..., is
’

an exchangeable sequence of rva's., Thus, by beFinetti's theorem [Feller

(1906), p. 225) there is a rve W a{k N (0) LX)
’

W
n,l1°’ n,m-1 n,m

such that

(5.1) The conditional sequence of rva's § q =1, 2, ..., consists

W
1\,&1|~1\’

of i.i.d. rva's, and that

, v =1, ..., m-], ™~

(5.4) P{&n,l=r!bn} : l"n,r

To prove the tirst main result we need some notation and two lemmas,
Let ¢ be the distribution function of a N(U,1) rva, let AU r-yr)fﬁ,

r=a1]1, ...,m-1, n=1,2, ..., and let ﬁl' ey Bm-l be rcal numbers,

n
Further, let 1“'1(5) = 1(|Un’r|55’r=l,...,m-l). sc(i,™), let On(ﬁl....,ﬁm_l) =
m-1 2 -1 . D . _ym-1 2 m-1 2
T=] ﬁrwn.r'(zr-l Brhn.r) » and let € (ﬁl""‘ﬁm-l)‘)rnl Bryr lzr-l 3r*r) )

- . N




- -1
Firoughout we assume that g = );_l B

Lemma 5.2, Let R(n)ell,...,n}, n=1, 2, ..., be a sequence of rva's

-0,

independent of xﬂ tor u =1, 2, ..., let ln W) = l(ln-lR(“)—:l/ﬁ W), 9
. - l -1/2 -1, . - N ]
and let B(R(n),x)=(x- n(n)z )R (n)Un (nl..--.bm_l). n b, 2, ..., J
Xe{-®,@), we(0,»). Then for all real numbers s and w ;
. . 1 R(n) s
[ : ‘ =3 -
L LT C IO N TR LS
- ¢lh(R(n)_x)}]
Proot Let 1t = Zm-l 3 1 (¢ =r) =1, 2 By Statement n | )
Proot. Le N r=1 Bl ( “'q—x , 4 =1, 2, o0 . y btatement (o, o
and by the independence of R(n) and W the conditional rva's i IH yJR(n), J
-1 N,q -n
q =1, 2, ..., are i.i.d. 8y Statement (5.2) and by the independence of
and v . o ym-l ;\ -
®R(n) and , L(Hu"|:“,ﬂ(n)) 2r=18'“ T and Var (i l[\.‘,R(n\)
2 R(n) m-1 R(n)
= t = 2 W A\ L =1 5
U“ (Bl,...um_l), n 1, 2, ... . we note that lel " Zr=lﬁrlq-1 1(¢ . r)
: -k y 2 = 2y oo o Thus g > Be -
and that Ihn,l L(““'IILH-R("))|‘ R, n=1, 2, Fhus, by the Berry
Lssecen bound [Lodve (1%03), p. 2881
r . oy ym-1 l\(n) eryax R Sl ,
(5.4) -NT:YMI‘{ r=1 ‘lq \ \,q 1)\x|1n.lkn)} ME(h(n) X))
. -1/2 -3 : i <
s2¢BR (")“n (Bl""'“m-l)' where ¢ is a positive constant.
. . . - l R(n), ., . .
Now, £ I L0a1 1(5)1()1 | qu \ 1(5"’q-x)«x) -
- m-1 R(n) | - _ N . k\“
l(l1 ,(w)l l(s)L(l(Z “,Zq=1 - x)sx)lgn,k(n)}) forn=1,2, ..., s,

we (0,»). Thus, to prove Statement (5.3) it sutfices by Inequality (5.4 to

show that for all s, we(0,™)
(5.5) fim B ,0OR YT 1 9107 8 s ) = 0.
" B PPN n,1 7 T V1 m-1
n-Nv

Finally, we prove Statement (5.5). Let s, we(0,*), We note that
-1/2

AJ
1) on the sct

2 m-1 2 -1/
U A TR T I D S S O i BT S L TR AR
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{IUn’rISs,r=l,...,m-l}, and that Lim {]
N>

m-12 -1/2)_ ¢m-1 12 .2,
r=1Pr(Yy-sn )'(Zr=1|8r|(vr+sn 1242,

2 2
= 0%(leyl,... 18, )s0%(8,,...,8
-1/2

m_1). Now for n sufficiently large

-1/2

-1/2 -1/2 ] .
0 < In.z(w)R (n) sn (z-n w) and In,l(s) 0n (Bl""’em-l) is

bounded from above. Consequently Statement (5.5) follows. ||

Lemma 5.3. Let Z = {Zl,.
2

EZr =0, EZr = yr(l-yr), re{l,...,m-1} and that EZiZj =-yiyj, izje{l,...,m-1}.

..,Zm_l} be a MVN rve such that

Let us assume that Condition (1.10) holds. Then {Un 1,...,U _1} converges to Z.

n,m
. -1 c _
Proof. ie note that (Xn (O)Xn r(0)-Yr)”\n(0) =

- /hx;l(O){(n°lxn,r(0)-Ar)/ﬁlyr(n'lxn(O)-A)/ﬁ}, n=1, 2, ... . Thus, by
Condition (1.10) £im (X;I(O)Xn L0 -y )X (O0) =0 forr =1, ..., m The

n-+«o
result of the lemma follows now from Theorem 3.5 since, ) 1. ||

rel’r *
We are ready now to prove our first main result.
Theorem 5.4, Let us assume that Condition (1.11) holds. Let {zl,...,zm}
be a idlVN rve such that l:’Zr = 0, Ezi = (l+z)Yr(1-Yr), re{l,...,m} and that
EZiZj = -(1+z)yiyj, i#zje{1,...,m}. Then the rve

{(L'l(n)Z:E?)I(Cn q=r)-yr)/L(n),r-lf...,m}.converges to.Z.

. (1] L(n) Yo =
Proof. Let M .= (L (n)zq=1 16, o°7) Yy ML), =1, ..., m,
. _ tm-1 - 2
n=1,2, ..., let Hn T leal BrMn,r’ n=1, 2, ..., let MWN(0,(1+2)0 (81,...,Bm_1))
-1/2

m-1
rva, and let e _(x) = (L (n)x+zr=laryr)L(n), n=1, 2, ..., xe(-=,»),
Since, Z:=1 Mn,r = 0 to prove the result of the lemma it suffices to show

that {Mn l""'M

, n,m-l} converges to {Zl,...Zm_l}. Further, to prove the

preceeding statement it is enough to show that Mn converges to M for all real
m-1 s
numbers 8,,...,8, | such that [~ |8 |>0 [Billingsley (1963), p. 49]. Next,

we show that Mn converges to M.




we observe that IEI(Mnsx)—Eln l(s)l(M"sx)l N :P(lu“ >s,rel,...,m-1)

.Tl

tfor n = 1, 2, ..., and for se¢(V,»). By Lemma 5.3 {im lim P{|U [>s,r=1,...,m-1}
o roew n,r

= (0, Thus, to show that b, converges to Mot suffices to prove that tor all

Xe (‘“o-)

(5.0) Cim {im El“ l\s)l (Mn\x) = P{Msx).

S0 e

Y

Next, we apply Lemma 5.2 for a sequence R(n), n =1, 2, ..., of rva's

Jegenerate at L(n)., Let we(0,~) then l“ ,w) = 1 tor n sutticiently large.

s~

llence, we conclude from Statement (5.3) that {im {imfil 1(s)l(M 83 )-
cr o M n

- ﬁln lts)olB(L(n),v“(x)}I = U. Thus, to prove Statement (S.0) it is enough
t4

to show that for all xe(-=,~)

(5.7) Cim Cim EL (SYe{B(LIN) e (X))} = P{Msx}.

S e 4

Now, we observe that iE(ln l(s)-1)¢iB(L(n),cn(x)] s JP(]Un rl‘s,r-l....,m-l}

forn =1, 2, ..., and for sc(0,~). Thus, by Lemma 5.3 to prove Statement

(5.7) it suffices to show that for all xe(-w,®)

(5.8) tim E&{B(L(n),on(x))) = P{Msx}.
nre

Finally, we prove Statement (5.8). Llet I be a N(0,1) rva independent

of !“ forns=1, 2, ... . We note that h»{B(L(n),cn(x))} = P{ZsB[L(n),e“(x))} - N\\W

-1

- m-1 /2, . -1/2 ‘ .
- p(“°n(31""'“m-1) s g U YL (nIn sx}. By Lemma 5.3 re1 Sl

r=1"rn,r
converges to a N(“'Oz(ﬁl""'ﬁmul)) rva. By Lemma 5,3 and by the Jdominated

convergence theorem :0“(8......ﬁm_l) converges in probability to ZG(BI.. ).

R
Since, Z is independent of e for n = 1, 2, ..., Statement (5.8) follows. ||
Next, we prove our second main result, e need the tollowing lemma,

Lemma 5.5, Let t be a positive real number and let n be a positive integer.




Then the conditional rve {xn HOB S r(0),r-1....,m}|xn(t) and the rve
xn(t)-xn(o)
q=1 I(En’q=r),r=l,...,J} are equal in Jiscribution,

Proof. Let kl, cees km be nonnegative integers such that k = Z:.lkre(o,...,n}.

)

By Equation (2.1)
P{xn,r(t)'xn,r(o)'k ,r=l,...,m,x (t)-x (0)=k} =

k
'P{Sn,kst<sn,k*l’z =r)=k ,r=1,...,m}
By Lemma 2.4(a)
P{Sn.kSt<S Jkel? qul q=r)=kr,r=1,...,m} =
. P{Sn;kSt<Sn'k’l}P(Zq-l n,q"F)kpsT=1, 00 m} =

. P(Xn(t)-Xn(O)ak}P{zzsll(g =r)=k_,r=1,...,m}.

n,q
Consequently the result of the lemma follows. ||

Theorem 5.6. Let us assume that Condition (1.10) holds, and let te(0,«).
Further, let Z(t) = {Zl(t),...,Zm(t)} be a MVN rve such that EZr(t) =0,
EZ2(t) = v*(t)y? + u(t) Aeu(t))y_(1-y), re(l,...,n}, and that
EZ, ()2, (¢) = {tz(t)-u(t)(1+u(t)}viyj, izjell,...,m}. Then the rve
{(n'lx (t)-y_u(t)-2_)¥n,r=1,...,m} converges to Z(t).

n,r T T =

Proof. Let v, ..., v be real numbers such that Z:=llvrl>°' and let
e, 100 = an V)
8, =M, v (X ()X (0))n” -1 u(t)}, n=1, 2, ..., let

2

(0,12 vy r(t)+u(t)(1*u(t))7 AL R AN O ETOTETONE

1si<jsm 1/
let V_(2) = {(X_(t)-X (0))n° 1 L(t)}v/m, and let R(n) = (n~ 2V(t)+u(t))n.

r=1VrYr Jn, n=1, 2, ..., Xe(-=,»), Further, let

-—-‘A/“' wibaeitenasho:

Finally, let B(R(n),x) be as in Lemma 5.2, and let In 3(w) = I(]Vn(t)ISV),
»
n=1, 2, ..., we(0,»).
By Lemma 2.4(a) the rve {§_ .,...,E__} and the rva's X (t), te(0,=) are
n,l n,n n
independent for n = 1, 2, ... . Thus, xn(;), te(0,») and !n are independent

forn=1, 2, ... .




19

We note that
-1 ) S A (X _ -1 . .y _

(07X Oy (e) A )= (N (0)-A 0 e (TR (e) =X (0)) -y () I,
r=1, ..., m. Thus, to prove the result of the theorem it suffices by
Condition (1.10) to show that the rve ((n“(xn LOX (0))-y m(2))Vn,rel, ... m)
converges to I(t). 7To prove the precceding statement it is enough to show
that & converges to A tor all real numbers v,,...,v_ such that zm fv_f>v

n 1 n rel' r
LBillingsley (1968), p. 49]. Since, by Theorem 4.4 A" converges to A for
\Y = Vv

1 2t

such that Zf'llvm|>f and that Z?;ilvr-vm|>0. Let us denote v_-v by 8,

-V, * 0 it suffices to prove that 4, converges to A for Vis eres Vo

r=1, ..., m-1l respectively, Next, we prove that An converges to A, We
assume throughout that ZT;;IBr|>O.

We note that IhI(AnSx)(1-1n'l(s)1n.3(w)|sp(lvn(t)|>w}op{lun.r|>s,r-1,...,m-l}.
Thus, to prove that An converges to A it suffices by Theorem 4.4 and Lemma 5.3

to show that for all Xxe(«=,*)

(5.9) fim EI(Ansx)ln'l(s)ln’s(w)ap{Asx}.
b and
W

Next, we note that by Lemma 5.5 EI(AHSX)IH,ILS)IH,S(WJ =

m R(n)

= B(I ()1 SONEQ (8 s [W R IEL (DT (0T, v L VT, ar)se) ().

Since, Zr-lx(gn q=r) =1,q=1,2, ..., n=1, 2 ..., we obtain that

. - =l m-‘l R(n) = » -
ELLJ ()L s(W) T(8 sx)=BL ) ()1 <(W)I( r=lsrzq=l ORI SESNE v R(n)).
Thus, to prove Statement (5.9) it is enough to show by Lemma 5.2 that

(5.10)  &im Lim EI ()1 (W)e{B(R(n),e_,(x)-v R(n)}=P{Asx}.
o N ] » »
wee
Now, IE(ln 1 (T s (W) -1)e{B(R(n) e 1(x)-vmn(n)}sp{lvn(:)lw} +

OP(|Un rl>s,r-l....,m-l}. Hence, to prove Statement (5.10) it suffices by

A




Theorem 4.4 and Lemma 5.3 to show that

(5.11) £im Eo{ﬁ(k(n),e“ 1(x)-va(n)))-P(Asx).
) nand ’

Finally, we prove Statement (5.11). Let I be a N(U,1) rva independent

of Vn(t) and !n forn=1, 2, ... . Now Ee(B(R(n),en.l(x)-vmk(n)) =

- =P(z 1/2 -1/2, -1 m-1
PIZSBR(N) e ) () -v R(n)I=PLZ0 (B}, . 8, RV ™ Sen R 118 0, o
’(22-1“r*r)vn(‘)s‘)' By Lemma 5.3 and Theorem 4,4 n'lR(n) ;;isrun ¢ Sonverges

b4
to a N(O,uz(t)O’(Bl.....Bm_l)) rva. By Lemma 5.3, by the dominated convergence

1/

!l

theorm, aund oy vacoren 4.4 S0 (R el ,n )0
nl ’

m-1
- 1/2
“0(81""’Bm-1)" (

t). By Theorem 4.4 V“(t) converges to a N(O,rz(t)) rva.
Since, Vn(t) and Z are independent of !ﬂ forn=1, 2, ..., Statement (5.11)

follows. ||

y 1
- =L/ . . Ly .
{n converyes in probability to

)
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